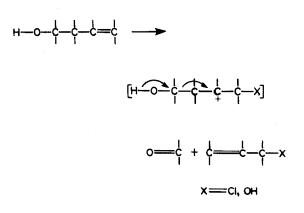
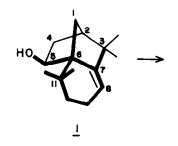
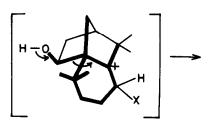
HETEROLYTIC CLEAVAGE OF HOMOALLYLIC ALCOHOLS-I

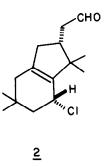

FRAGMENTATION OF 6-HYDROXYCAMPHENE DERIVATIVES^{a,b}

J. S. YADAV,^c DILIP G. PATIL, R. R. KRISHNA, H. P. S. CHAWLA and SUKH DEV* Malti-Chem Research Centre, Nandesari, Vadodara, India

(Received in U.K. 2 September 1981)

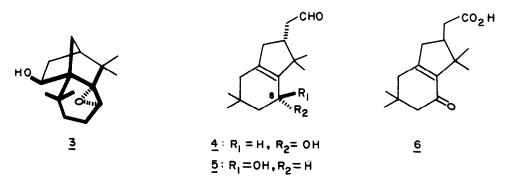

Abstract—Heterolytic fragmentation of homoallylic alcohols incorporated in a bicyclo[2,2,1]heptane system with electrophilic reagents or that of the corresponding epoxides with acids, is described. A short route, *via* this fragmentation, to synthon 25, potentially useful in the syntheses of *cis*-jasamone and prostanoids, is reported.


Heterolytic fragmentations of Y-C-C-C-X, where X and Y are nucleofuge and electrofuge respectively, to -C=C- and $Y^+=C$ moieties have been extensively studied¹ and frequently made use of in organic synthesis.² We wish to report a related yet novel cleavage of homoallylic alcohols incorporated in a bicyclo[2,2,1]heptane system under conditions of electrophilic additions or acid-catalysed ring-opening of the corresponding epoxides. In generalised terms, this fragmentation can be depicted as follows:



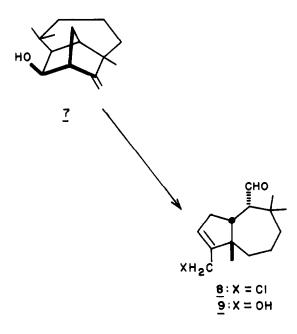
The reaction differs from Grob fragmentations¹ in producing allylic halides or alcohols, instead of olefins and, in appropriate cases, this can be of distinct value for synthetic operations.³

The cleavage was first observed while studying the reactions of an isolongifolene derivative 1^4 which on treatment with 1 molar equivalent of chlorine (5% soln in CCl₄) at 0° in presence of excess Li₂CO₃, yielded the allylic chloride 2 (IR: CHO 2720, 1730 cm⁻¹. PMR: CHCl, br sig, 4.56 ppm, W_H = 7 Hz; CHO, t, 9.78 ppm, J = 1.5 Hz), in almost quantitative yield. The compound was found to be labile and its properties could only be studied in CCl₄ soln, as attempts at its purification



through distillation or chromatography led to decomposition. The stereochemistry of the C-Cl bond in 2 follows from the known propensity for *endo* attack (with reference to norbornyl part) in isolongifolene derivatives.⁵ The configuration of the OH group was found to be inconsequential since the other epimer of 1 (5 - endo hydroxyisolongifolene) fragmented with equal ease to give the same product 2.

^aMRC communication No. 28.


^bPreliminary communication: Tetrahedron Letters 201 (1977).

[°]Present address: National Chemical Laboratory, Pune, India.

In an obvious extention of the above, epoxide 3 on exposure to 0.35% HClO₄ in 90% aqueous dioxane (10°, 15 min) furnished, in almost quantitative yield, a mixture of epimeric alcohols 4 (PMR: CHOH, br sig, 4.21 ppm, $W_H = 9 Hz$; CHO, t, 9.83 ppm, J = 1.5 Hz) and 5 (PMR: CHOH, br sig, 4.04 ppm, $W_{H} = 8$ Hz; CHO, t, 9.76 ppm, J = 1.5 Hz) in which 4 predominated. The formation of both isomers, rather than only 4, is ascribed to acidcatalysed epimerisation (to some extent) at C-8 under the reaction conditions. The same epimeric mixture but in which now 5 predominates, is obtained by solvolysis (aq. dioxane, Li CO_3) of the chloroaldehyde 2. The epimeric mixture of alcohols from both the reactions, on Jones' oxidation,⁶ furnished the same keto acid 6 (λ_{max}^{EtOH} 250.5 nm, 15150). These transformations also serve to further support the structures of the fragmentation products 2 and 4/5.

Another homoallylic alcohol 7^7 (m.p. 171.5-172.5°) on exposure to Cl₂ yielded (~90%) the expected chloroal-

dehyde 8 (IR: CHO 2705, 1705 cm⁻¹. PMR: CH₂Cl, brs, 4.01 ppm; C-CH, brs, 5.72 ppm, $W_H = 9$ Hz; CHO, d, 9.80 ppm, J = 4 Hz) while the derived epoxide on acid cleavage furnished (~95%) the anticipated hydroxyaldehyde 9 (PMR: CH₂OH, brs, 4.14 ppm; C = CH, bs, 5.50 ppm, $W_H = 7$ Hz; CHO, d, 9.91 ppm, J = 4 Hz). In both of the systems studied above, the moiety undergoing fragmentation forms a part of a 6-hydroxycamphene nucleus. Hence, the rest of the study, aimed at delineating the scope of the reaction, was carried out with 6-hydroxycamphene itself. Fragmentation of 6hydroxycamphene⁸ 10 took place in high yields with various electrophilic reagents (Table 1). The tertiary alcohol 12 and cyanohydrin 13 were found to be equally amenable to cleavage.

The fragmentation discussed above, appears to be well-suited for the synthesis of certain substituted cyclopentanes which can serve as synthons for several cyclopentane-containing natural products. With a view to exploring this possibility, the fragmentation of 5-norbornen-2-ol¹² 23 was investigated. Reaction of 23 with Cl_2 or Br_2 led to a complex mixture of products but, gratifyingly, its treatment with mercuric acetate or mercuric trifluoroacetate directly gave lactol 25.¹⁴ The latter could be potentially useful for the syntheses of *cis*-jasamone¹⁵ and some prostaglandin intermediates.^{16,17} The structure of lactol 25 was further secured by its oxidation to the known lactone 26.¹⁸

EXPERIMENTAL

All m.ps and b.ps are uncorrected. Light petroleum refers to the fraction b.p. $60-80^{\circ}$. All solvent extracts were finally washed with brine and dried (Na₂SO₄).

The following instruments were used for spectral/analytical data: Perkin-Elmer IR Spectrophotometer, model 267; Perkin-Elmer UV Spectrophotometer, model 402; Perkin-Elmer model R32 (90 MHz) PMR Spectrometer; Varian Mat CH7 Mass spectrometer (70 eV, direct inlet system); Hewlett-Packard 5712 A and 7624 A gas chromatographs (Al columns, 180 \times 0.6 cm; support, 60-80 mesh chromosorb W; carrier gas, H₂). All PMR spectra were taken in 15-20% soln in CCl₄ (unless stated to the contrary) with TMS as internal reference; signals are reported in ppm (δ); while citing PMR data, the following abbreviations have been used: s, singlet; d, doublet; t, triplet, m, multiplet; sig, signal; br, broad. While summarising mass spectral data, besides the molecular ion, the nine most abundant ions (m/e) are reported with their relative intensities.

Silica gel for chromatography (-100 + 200 mesh) was washed with hot water till sulphate-free, dried and activated at 125-130° for 6 hr and standardised.¹⁸ Tlc was carried out on SiO₂-gel layers (0.25 mm) containing 15% gypsum and activated at 110-115° (2 hr).

Reaction of 5-exo-hydroxyisolongifolene 1 with Cl₂. To a cooled soln $(-5 \pm 2^{\circ})$ of 1⁴ (0.66 g, 3 mmol) in CCl₄ (20 ml) containing Li₂CO₃ (0.61 g, 9 mmol) was introduced a cold soln of Cl₂ (4.2%, 5 ml = 0.21 g of Cl₂, 3 mmol) over 5 min. The yellow colour of Cl₂ was discharged immediately after addition of Cl₂ was over. Li₂CO₃ was then filtered off and washed with CCl₄ (2 ml × 2). The solvent was removed at 10 ± 2° under reduced pressure to give a residue (0.78 g) of 2. IR: CHO 2720, 1730 cm⁻¹; C=C 1650 cm⁻¹. PMR: C-Me's (singlets at 0.99, 1.0, 1.01 and 1.03 ppm), CHCl

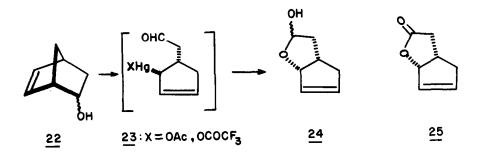

Entry	Substrate R1 R2	Electro- philic reagent	Product Yield %	Isolated [*] as R H OH
1	<u>10</u> : R ₁ =OH, R ₂ =H	Cl ₂	<u>14</u> : R-H, X=C1 >95	<u>21</u> ¶: R=H
2	<u>10</u>	Br2	<u>15</u> : R=H, X=Br 95	<u>21</u> ¶
3	<u>10</u>	BrN ₃	<u>15</u> 95	<u>21</u> ¶
4	<u>10</u>	Hg (OAc) ₂	<u>16</u> : R=H, X=Hg(OAc) 95	<u>21</u> ¶
5	<u>11</u> : R ₁ =H,R ₂ =OH	Hg (OAc) ₂	<u>16</u> 95	<u>21</u> ¶
6	<u>12</u> : R ₁ =Me, R ₂ =OH	ICl	<u>17</u> : R=Me, X=I 85	<u>22^{\$}: R=Me</u>
7	12	Br ₂	<u>18</u> : R=Me, X=Br >90	<u>22</u> [§]
8	<u>12</u>	Hg (OAc) 2	<u>19</u> : R=Me, X=Hg(OAc)>95	
9	<u>13</u> : R ₁ =CN, R=OH	Br ₂	<u>20</u> : R = CN, X=Br 90	<u>21</u> ¶

Table 1. Fragmentation of 6-hydroxycamphene derivatives

*The fragmentation product was reduced, without purification, with NaBH4/LAH

[¶]Identical with a-campholenic alcohol^{9,10}

⁵The mixture of alcohols obtained was oxidised to a single ketone: 1-(2',2',3'-trimethylcyclopent-3'-en-1'-yl)-propan-2-one¹¹

(1H, br sig, 4.56 ppm, $W_H = 7$ Hz), CHO (1H, t, 9.78 ppm, J = 1.5 Hz).

5-endo-Hydroxyisolongifolene and its fragmentation with Cl₂. To a stirred slurry of LAH (300 mg) in ether (30 ml) was added dropwise, a soln of 5-oxo-isolongifolene²⁰ (1.2 g) in ether (25 ml). After usual work-up, the residue was chromatographed over SiO₂-gel (IIB, $1.5 \text{ cm} \times 45 \text{ cm}$): (i) 1:1 C₆H₆-light petroleum, $25 \text{ ml} \times 3$, 950 mg (ii) 1:1 C₆H₆-light petroleum, 25 ml, 31 mg, mixture (iii) C₆H₆, 25 ml×2, 100 mg, solid m.p. 82-85°, characterised as 1. Frac. (i) was distilled to give pure 5-endo-hydroxyisolongifolene (900 mg) which crystallised on standing, m.p. 48.5-49.5°. IR (liq. film): OH 3455, 1120, 1080 cm⁻¹; C=CH 870, 840 cm⁻¹. PMR: C-Me's (singlets at 0.79, 0.99, 1.03 and 1.11 ppm), CHOH (1H, dd, 4.05 ppm, $J_1 = 8.5$ Hz, $J_2 = 3$ Hz), C = CH (1H, t, 5.56 ppm, J = 3.5 Hz). (Found: C, 81.49; H, 10.59. C15H24O requires: C, 81.76; H, 10.98%).

5-endo-Hydroxyisolongifolene (200 mg) was treated with Cl₂ soln in CCl₄ (4.2%, 1.25 ml) to give a product (210 mg) which was identical with 2 (IR, PMR).

Solvolysis of chlrooaldehyde 2. The chloroaldehyde 2 (650 mg) was stirred (N2, 3 hr) with Li2CO3 (580 mg) in 50% dioxane aq (20 ml) at $40 \pm 1^\circ$. The contents were cooled to room temp. Li₂CO₃ was filtered and washed with ether $(10 \text{ ml} \times 2)$. The filtrate was diluted with water (20 ml) and extracted with ether (10 ml \times 3). The ether layer was washed, dried and concentrated to give a residue (613 mg) which was chromatographed over SiO₂-gel (IIIB, 1.0 cm \times 25.0 cm). After elution with C₆H₆ (25 ml \times 3) the column was eluted with 5% EtOAc in C_6H_6 (25 ml × 4) to give a mixture (434 mg) of alcohols 4 and 5 with the latter predominating. PMR: C-Me's (3H singlets at 0.79, 0.89, 1.05 and 1.13 ppm), CHOH (1H, br sig, 4.04 ppm, W_H = 8 Hz), CHO (1H, t, 9.76 ppm, J = 1.5 Hz).

Oxidation of 4/5 to keto acid 6. The mixture of alcohols (4/5) obtained above (180 mg) was dissolved in acetone (1 ml), cooled (0°), and treated with Jones' reagent (0.5 ml). After stirring (0°) for 1 hr, the mixture was worked-up to give a solid residue (170 mg) which was crystallised from CH₃CN to give 6, m.p. 162-164°. IR: C=0 1725, 1705 cm⁻¹. PMR: C-Me's (3H singlets at 0.96, 1.12, 1.18 and 1.28 ppm). UV (EtOH): λ_{max} 250.5 nm (ϵ 15150). (Found: C, 71.74; H, 8.87. C₁₅H₂₂O₃ requires: C, 71.97; H, 8.86%).

Epoxidation of 1. To a soln of 5-exo-hydroxyisolongifolene 1 (490 mg) in 20% toluene in C_6H_6 (5 ml), cooled to 25°, was added a soln of perbenzoic acid (420 mg) in C_6H_6 (5 ml). The contents were set aside at $-5 \pm 1^\circ$ for 48 hr. The mixture was diluted with ether (15 ml) and washed with 5% NaHCO₃ aq (10 ml × 3) and 10% NaHSO₃ aq (10 ml). After work-up, the residue was crystallised from light petroleum to yield 3 (400 mg), m.p. 102-103°. IR (CHCl₃): OH 3610, 3495, 1040 cm⁻¹; oxirane ring 3045, 1220, 880 cm⁻¹. PMR (CDCl₃): C-Me's (3H singlets at 0.68, 0.94, 1.03 and 1.10 ppm), CHOC (1H, t, 3.12 ppm, J = 4 Hz), CHOH (1H, ddd, 4.21 ppm, J₁ = 1.5 Hz, J₂ = 3 Hz, J₃ = 6.5 Hz). (Found: C, 75.94; H, 10.09. C₁₅H₂₄O₂ requires: 76.22; H, 10.24%).

Action of HClO₄ on epoxide 3. To a soln of HClO₄ (0.35%) in 90% dioxane aq (10 ml) at 10° was added 3 (315 mg) in one lot. The contents were stirred at the same temp for 15 min and basified with 5% NaHCO₃ aq (15 ml). After dilution with water (30 ml), the mixture was extracted with ether (15 ml × 3). Workup of the ether extracts gave a residue consisting of a mixture of 4 and 5 in which 4 predominated. IR (CHCl₃): CHO 2705, 1720 cm⁻¹; OH 3440, 1020 cm⁻¹. PMR (CDCl₃): C-Me's (3H singlets at 0.94, 0.97, 0.97 and 1.00 ppm), CHOH (1H, br sig, 4.21 ppm, W_H = 9 Hz), CHO (1H, t, 9.83 ppm, J = 1.5 Hz).

The oxidation of mixture of alcohols (4, 5) obtained above with Jones' reagent gave a product identical with 6 (vide supra).

Reaction of 7 with Cl₂. A soln of 7 (220 mg) in CHCl₃ (2 ml) was treated with Cl₂ in CCl₄ (3.6%, 2 ml) in the presence of Li₂CO₃ (210 mg) at -2° . Usual work-up provided 8 (235 mg). IR (CHCl₃): CHO 2705, 1705 cm⁻¹. PMR: C-Me's (singlets at 0.97, 1.05 and 1.28 ppm), CH₂Cl (2H, brs, 4.01 ppm, W_H = 5 Hz), C=CH (1H, br sig, 5.72 ppm, W_H = 9 Hz), CHO (1H, d, 9.80 ppm, J = 4 Hz).

Fragmentation of epoxide derived from 7. The homoallylic alcohol 7 was treated with perbenzoic in toluene-benzene mixture $(-5^\circ, 100 \text{ hr})$ to give the corresponding epoxide. PMR: C-Me's (singlets at 0.89 and 1.08 ppm), oxirane CH₂ (1H, d, 2.23 ppm; 1H, d, 2.44 ppm; J = 5 Hz), CHOH (1H, d, 4.07 ppm, J = 6 Hz).

The above epoxide on treatment with 0.35% HClO₄ in 90% dioxane aq (5 ml) at 10° for 15 min gave 9. PMR (CDCl₃): C-Me's (3H singlets at 0.97, 1.05 and 1.13 ppm), CH₂OH (2H, brs, 4.14 ppm, $W_H = 6$ Hz) C=CH (1H, br sig, 5.50 ppm, $W_H = 7$ Hz), CHO (1H, d, 9.91 ppm, J = 4 Hz).

Fragmentation of 6-hydroxycamphene 10

(i) With Cl₂. A soln of 10^8 (540 mg) in CCl₄ (10 ml) containing Li₂CO₃ (500 mg) on treatment with Cl₂ soln (4.2%, 6 ml) and work-up gave 14 (~635 mg). IR (CCl₄): CHO 2710, 1725 cm⁻¹; C=CH 885, 700 cm⁻¹. PMR: C-Me's (3H singlets at 0.92 and 1.12 ppm), CH₂Cl (2H, brs, 4.04 ppm, W_H = 4 Hz), C=CH (1H, br sig, 5.76 ppm, W_H = 6 Hz), CHO (1H, t, 9.75 ppm, J = 1.5 Hz).

Compound 14, obtained above (350 mg) in THF (10 ml) was added dropwise to a stirred slurry of LAH (250 mg) in THF (10 ml) and stirred at ambient temp $(30 \pm 1^{\circ})$ for 36 hr. Usual work-up gave a residue (300 mg) which was distilled to give 21,^{9,10} b.p. 110-115° (bath)/2.5 mm; np²⁵ 1.4678. IR (liq. film): OH 3340, 1050 cm⁻¹; C=CH 800 cm⁻¹. PMR: C-Me's (3H singlets at 0.76 and 0.97 ppm), C=C-Me (3H, brs 1.61 ppm), CH₂OH (2H, m, 3.59 ppm), C=CH (1H, br sig, 5.20 ppm, W_H = 8 Hz) (lit.⁹ IR: PMR).

(ii) With Br₂/BrN₃. Treatment of 10 (1 mmol) with either Br₂ (1 mmol) in CCl₄ or BrN₃ (1 mmol) in CH₂Cl₂ in presence of Li₂CO₃ (3 mmol) at $-5\pm2^{\circ}$ gave almost quantitative yield of 15. IR: CHO 2710, 1725 cm⁻¹; C=C 1650 cm⁻¹. PMR: C-Me's (3H singlets at 0.92 and 1.12 ppm), CH₂Br (2H, s, 3.92 ppm), C=CH (1H, br sig, 5.80 ppm, W_H = 6 Hz), CHO (1H, t, 9.72 ppm, J = 1.5 Hz). Compound 15 on reduction with LAH gave α -campholenic alcohol 21.

(iii) With Hg(OAc)₂. To a soln of Hg(OAc)₂ (318 mg, 1 mmol) in water (5 ml) and THF (2.5 ml) was added a soln of 10 (152 mg, 1 mmol) in THF (2.5 ml). The mixture was stirred at ambient temp (~30°) for 1 hr. The organomercurial acetate was reduced, without isolation, by stirring with 3N NaOH aq (5 ml) and 0.5 M NaBH₄ in 3N NaOH (5 ml) for 2 hr at ambient temp. (~30°). The mixture was extracted with ether (20 ml × 3). The combined ether extracts were washed with brine (5 ml), dried and solvent was distilled off. The residue was distilled to get 21 (150 mg, ~100%).

The endo-alcohol⁸ 11 on similar treatment gave the same product (>95%).

6 - exo - Methyl - 6 - endo - hydroxycamphene 12. A soln of 6-ketocamphene⁸ (0.45 g, 3 mmol) in ether (10 ml) was added dropwise to a cooled (0-5°) soln of Grignard reagent, prepared from Mg turnings (0.15 g, 0.006 g atom) and CH₃I (0.85 g, 6 mmol) in ether. The reaction mixture was stirred at room temp (30°) for 4 hr and subsequently refluxed for 1 hr. It was then decomposed with a soln of NH₄Cl aq. Usual work up gave a residue which was distilled to give 12 (0.4 g, 81%), b.p. 120° (bath)/5 mm. IR (liq. film): OH 3530, 3480, 1060 cm⁻¹; C=CH₂ 1640, 940 cm⁻¹. PMR (CDCl₃): C-Me's (6H, s, 1.11 ppm), -C(OH)CH₃ (3H, s, 1.34 ppm) CH-C=CH₂ (1H, brs, 2.45 ppm, W_H = 4 Hz), C=CH₂ (2H, s, 4.98 ppm). Mass: m/e 166 (M⁺, 2.5%), 151 (4%), 133 (4%), 123 (7%), 108 (100%), 107 (20%), 93 (52%), 91 (14%), 81 (8.5%) and 44 (35%). (Found: C, 79.21; H, 10.97. C₁₁H₁₈O requires: C, 79.52; H, 10.84%).

Fragmentation of 12

(i) With Br₂. A soln of 12 (0.1 g, 0.6 mmol) in CCl₄ (2 ml) was treated in presence of Na₂CO₃ (0.1 g) with a soln of Br₂ (0.096 g, 0.6 mmol) in CCl₄ at -5° . Usual work-up gave 18 which without isolation was dissolved in ether (10 ml) and treated with LAH (30 mg). The mixture was stirred at room temp (~30°) for 5 hr. Work-up and removal of solvent gave a residue which was distilled to give 22 (90 mg, 90%), b.p. 90°(bath)/5 mm. IR (liq. film): OH 3360 cm⁻¹, C=C 1645, 970 cm⁻¹. PMR (CDCl₃): C-Me's (3H singlets at 0.78 and 1.0 ppm), C(OH)CH₃ (3H doublets at 1.21 and 1.25 ppm, J=6 Hz), C=C-CH₃ (3H singlets at 1.62 and 1.63 ppm), CHOH (1H, m, 3.7-4.06 ppm), HC=C (1H, brs, 5.28 ppm, W_H = 6 Hz). Mass: m/e 168 (M⁺, 14%), 135 (28%), 120 (9%), 107 (100%), 93 (57%) and 91 (51%). (Found: C, 78.90; H, 12.11.

Oxidation of 22 to 1 - (2',2',3' - trimethylcyclopent - 3' - en - 1' - yl)propan - 2 - one

To a complex prepared²¹ from CrO₃ (0.182 g, 1.8 mmol) and pyridine (1.8 lm) was added a soln of mixture of alcohols 22 (0.078 g, 0.5 mmol) in pyridine (0.45 ml) and stirred at room temp (~30°) for 24 hr. Usual work-up and distillation of the residue gave the title ketone (0.066 g, 85%), b.p. 90°(bath)/3.5 mm (lit. ¹¹ b.p. 81-82.5/6 mm). IR (liq. film): C=O 1710 cm⁻¹. PMR: C-Me's (3H singlets at 0.78 and 1.0 ppm), C=C-CH₃ (3H, s, 1.62 ppm), COCH₃ (3H, s, 2.1 ppm), CH=C (1H, brs, 5.24 ppm, W_H = 6 Hz) (lit.¹¹ IR, PMR). Mass: *mle* 166 (M⁺, 6.4%), 123 (8.5%), 108 (100%), 93 (66%), 80 (30%) and 43 (74%). (Found: C, 79.38; H, 10.69. C₁₁H₁₈O requires: C, 79.52; H, 10.84.)

(ii) With ICl. Treatment of 12 (100 ml) with ICl (98 mg) gave a product 17 which was too unstable and was immediately reduced with LAH to 22.

(iii) With Hg(OAc)₂. To a soln of 12 (0.106 g, 0.64 mmol) in THF-H₂O (1:1, 5 ml) was added Hg(OAc)₂ (0.204 g, 0.64 mmol) and the reaction mixture was stirred at 20° for 5 hr. Usual work-up after dilution with water gave a gummy residue which was crystallised from light petroleum to give 19 (0.26 g, 98%), m.p. 104-106°. IR (CHCl₃): C=O 1705 cm⁻¹; Hg(OAc) 1600 cm⁻¹. PMR (CDCl₃): C-Me's (3H singlets at 0.92 and 1.12 ppm) Hg(OCO CH₃) (3H, s, 2.02 ppm), COCH₃ (3H, s, 2.15 ppm) C=CH (1H, brs, 5.4 ppm).

6 - exo - Cyano - 6 - endo - hydroxycamphene 13. A mixture of 6-ketocamphene⁸ (0.396 g, 2.7 mmol), acetone cyanohydrin (1.125 g, 13.2 mmol) and a drop of 10% K₂CO₃ aq was stirred at room temp (30°) for 2 hr. The mixture was poured in water and extracted with light petroleum (10 ml × 3). The combined petrol

extracts were washed and dried. The residue was chromatographed over SiO₂-gel (1.2 cm × 18.0 cm). After elution with CHCl₃, the column was eluted with EtOAc-CHCl₃ (1:9, 20 ml). The removal of solvents from the eluate provided 13 as a colourless oil (0.371 g, 80%), b.p. 150-155°(bath)/2.5 mm. IR (CCl₄): OH 3580, 3420, 1110 cm⁻¹; C=N 2240 cm⁻¹; C=CH₂ 1660, 900 cm⁻¹. PMR (CDCl₃): C-Me's (6H, s, 1.12 ppm), CH-C=C (1H, brs, 2.85 ppm, W_H = 4 Hz), C=CH₂ (1H, singlets at 4.98 and 5.21 ppm), Mass: m/e 177 (M⁺, 8%), 162 (8%), 121 (21%), 118 (100%), 93 (91%), 79 (12%) and 77 (17%). (Found: C, 74.81; H, 8.19; N, 7.62. C₁₁H₁₅NO requires: C, 74.57; H, 8.47; N, 7.91%).

Fragmentation of 13. Treatment of 13 with Br_2 (1 mol eq.) followed by reduction with LAH gave 21.

Cleavage of norborn - 4 - en - 2 - ol. A soln of norborn - 5 - en -2 - ol¹² (2.0 g, 18.2 mmol) in THF aq (1:1, 50 ml) was cooled to 20° and Hg(OAc)₂ (5.8 g, 18.2 mmol) was added in portions over 20 min. Stirring at 20° was continued for 5 hr. The mixture was diluted with water (50 ml) and worked-up to give a viscous liquid (1.99 g) which was chromatographed over $A_{2}O_{3}$ (II, 2.5 cm × 19 cm); (i) 0.5% MeOH in CHCl₃, 10 ml × 10, 60 mg, mixture; (ii) 1% MeOH in CHCl₃, 15 ml × 15, 1.05 g. Frac. (ii) was distilled to furnish **25** (1.05 g, 45%), b.p. 120-125°/5 mm. IR (liq. film): OH 3400, 1070 cm⁻¹; C=C 1625, 895 cm⁻¹. PMR (CDCl₃): CHOC (1H, m, 5.15-5.38 ppm). CHOH (1H, m, 5.43-5.63 ppm), CH=CH (2H, m, 5.72-5.98 ppm). Mass: m/e 126 (M⁺, 1.3%), 125 (3%), 108 (13%), 80 (100%), 79 (91%), 70 (13%), 66 (28%), 57 (12%), 55 (16%) and 41 (25%). (Found: C, 66.73; H, 8.00. C₇H₁₀O₂ requires: C, 66.67; H, 7.94%).

Oxidaion of lactol 25. A soln of the lactol 25 (75 mg, 0.6 mmol) in annhydrous CH_2Cl_2 (4 ml) was added in one lot to a suspension of pyridinium chlorochromate²² (257 mg, 1.2 mmol) in CH_2Cl_2 (4 ml) and the contents were stirred (~28°) for 1.5 hr. Anhyd ether (20 ml) was then added and the supernatant liquid was decanted from the black gummy residue. The latter was washed with ether (10 ml × 3). The combined ether extracts were passed through a small bed of deactivated Al_2O_3 . Removal of solvent followed by distillation gave 26 (47 mg, 64%). b.p. 120-5° (bath)/5 mm (litt.¹⁸ b.p. 95-100°/4 mm). IR (CCl₄): y-lactone 1770 cm⁻¹. PMR: CH-O- (1H, dd, 5.45 ppm, J₁ = 6.5 Hz, J₂ = 1.5 Hz), C=CH-CH₂ (1H, m, 5.82-5.95 ppm), C=CH-CHO- (1H, m, 6.01-6.17 ppm) (lit.²³ PMR).

REFERENCES

¹See e.g.: P. S. Wharton and G. A. Hiegel, J. Org. Chem. 30, 3254 (1965); G. Ohloff, J. Becker, K. H. Schulte-Elte, Helv. Chim. Acta 50, 705 (1967); C. A. Grob and P. W. Schiess, Angew. Chem. Int. Ed. 6, 1 (1967); W. Kraus and W. Rothenwohrer, Tetrahedron Letters 1007, 1013 (1968); P. G. Gassman and J. M. Hornback, J. Am. Chem. Soc. 91, 5817 (1969); C. A. Grob, Angew. Chem. Int. Ed. 8, 535 (1969); J. A. Marshall, Synthesis 5, 229 (1971); J. A. Marshall and J. L. Belletire, Tetrahedron Letters 871 (1971); C. A. Grob, B. Schmitz, A. Sutter and A. H. Weber, Ibid. 3551 (1975); A. Fischli, Q. Branca and J. Daly, Helv. Chim. Acta 59, 2443 (1976); H. D. House and V. L. Thomas, J. Org. Chem. 44, 2819 (1979); H. C. Brown, G. L. Buchanan and J. O'Donnell, J. Chem. Soc. Perkin I 1740 (1979); L. F. Tietze, G. Kinast and H. C. Uzar, Angew. Chem. Int. Ed. 18, 541 (1979); L. F. Tietze and U. Reichert, Ibid. 19, 830 (1980). ²Inter alia see: E. J. Corey, R. B. Mitra and H. Uda, J. Am. Chem. Soc. 86, 485 (1964); R. Zurfluh, E. N. Wall, J. B. Siddall and J. A. Edwards, Ibid. 90, 6224 (1968); S. Julia and G. Linstrumelle, Bull. Soc. Chim. Fr. 3490 (1966); K. Sisido, S. Kurozumi and K. Utimoto, J. Org. Chem. 34, 2661 (1969); B. D. Challand, H. Hikino, G. Kornis, G. Lange and P. deMayo, Ibid. 34, 794 (1969); J. E. McMurray and S. J. Isser, J. Am. Chem. Soc. 94, 7132 (1972); G. Stork, T. M. Tabak and J. Blount, *Ibid.* 94, 4735 (1972); K. P. Dastur, *Ibid.* 96, 2605 (1974); G. Mehta and S. K. Kapoor, J. Org. Chem. 35, 2618 (1974); G. Kinast and L. F. Tietze, Chem. Ber. 109, 3626 (1976); B. M. Trost, M. J. Bogdanowicz, W. J. Frazee and T. N. Salzmann, J. Am. Chem. Soc. 100, 5512 (1978); T. Kalya, N. Shirai and J. Sakakibara, J. Chem. Soc. Chem. Comm. 431 (1979); D. Sternbach, M. Shibuya, F. Jaisli, M. Bonetti and A. Eschenmoser, Angew. Chem. Int. Ed. 18, 636 (1979).

- ³J. S. Yadav, H. P. S. Chawla and Sukh Dev, *Tetrahedron Letters* 1149 (1977).
- ⁴E. H. Eschinasi, G. W. Shaffer and A. P. Bartels, *Ibid.* 3523 (1970).
- ⁵J. A. McMillan, I. C. Paul, U. R. Nayak and Sukh Dev, *Ibid.* 419 (1974).
- ⁶R. G. Curtis, I. Heilbron, E. R. H. Jones and G. F. Woods, *J. Chem. Soc.* 457 (1953).
- ⁷This compound has been synthesised from longicyclene; the details will be reported elsewhere.
- ⁸M. Gaitonde, P. A. Vatakenchery and Sukh Dev, *Tetrahedron Letters* 2007 (1964); Also see: M. Julia, D. Mansuy and P. Detraz, *Ibid.* 2141 (1976); N. Darby, N. Lamb and T. Money, *Can. J. Chem.* 57, 742 (1979).
- ⁹V. S. Joshi, N. P. Damodaran and Sukh Dev, *Tetrahedron* 24, 5817 (1968).
- ¹⁰A. F. Thomas, Helv. Chim. Acta 55, 815 (1972).
- ¹¹The ketone serves as a synthon for a group of juvenile hormone analogues; A. Siewinski, J. Dmochowska-Gladysz, T. Kolch, A. Zabra and K. Derdzinski, *Tetrahedron* 35, 1409 (1979).
- ¹²A mixture of exo and endo isomers (1:3) was used for fragmentation. This mixture was prepared by saponification of the corresponding acetates obtained by a modification of a known procedure.¹³ Instead of cyclopentadiene monomer, commercially available dicyclopentadiene itself was used (for Diels-Alder reaction with vinyl acetate) resulting in ~10% inprovement in the overall yield. The mixture of alcohols 23 is also available from Aldrich Chemical Co.
- ¹³D. A. Lightner and W. A. Beavers, J. Am. Chem. Soc. 93, 2677 (1971).
- ¹⁴The allylic mercuric acetate/trifluoroacetate 24 undergoes facile solvolytic "demercuration" under the experimental conditions; see, e.g. P. D. Sleezer, S. Winstein and W. G. Young, J. Am. Chem. Soc. 85, 1890 (1963).
- ¹⁵See e.g.: P. A. Grieco, J. Org. Chem. 37, 2363 (1972). Also see: E. J. Corey, Z. Arnold and J. Hutton, *Tetrahedron Letters* 307 (1970).
- ¹⁶See e.g. P. A. Grieco and J. J. Reap, J. Org. Chem. 38, 3413 (1973).
- ¹⁷See e.g.: W. Bartmann, G. Beck and U. Lerch, *Tetrahedron Letters* 2441 (1974); L. Novak, J. Rohaly, C. Szantay and M. Kajtar, *Acta Chim Acad. Sci. Hung.* 102, 91 (1979); *Chem. Abstr.* 93, 7691 (1980).
- ¹⁸J. Meinwald and B. C. Cadoff, J. Org. Chem. 27, 1539 (1962).
- ¹⁹R. Hernandez, R. Hernandez Jr. and L. R. Axelrod, Analyt. Chem. 13, 370 (1961).
- ²⁰J. S. Yadav, U. R. Nayak and Sukh Dev, *Tetrahedron* 36, 309 (1980).
- ²¹J. C. Collins, W. W. Hess and F. J. Frank, *Tetrahedron Letters* 3363 (1968); R. Ratcliffe and R. Rodehorst, *J. Org. Chem.* 35, 4000 (1970).
- ²²E. J. Corey and J. W. Suggs, Tetrahedron Letters 2647 (1975).
- ²³T. K. Dasgupta, D. Felix, U. M. Kempe and A. Eschenmoser, *Helv. Chim. Acta* 55, 2198 (1972).